
rowan Documentation
Release 0.5.0

Vyas Ramasubramani

Feb 12, 2019

Contents:

1 rowan 3

2 random 13

3 Development Guide 15
3.1 Philosophy . 15
3.2 Source Code Conventions . 16
3.3 Unit Tests . 16
3.4 General Notes . 16

4 License 17

5 Changelog 19
5.1 Unreleased . 19
5.2 v0.4.4 - 2018-04-10 . 19
5.3 v0.4.3 - 2018-04-10 . 19
5.4 v0.4.2 - 2018-04-09 . 20
5.5 v0.4.1 - 2018-04-08 . 20
5.6 v0.4.0 - 2018-04-08 . 20
5.7 v0.3.0 - 2018-03-31 . 20
5.8 v0.2.0 - 2018-03-08 . 20
5.9 v0.1.0 - 2018-02-26 . 21

6 Credits 23

7 Support and Contribution 25

8 Indices and tables 27

Bibliography 29

Python Module Index 31

i

ii

rowan Documentation, Release 0.5.0

Welcome to the documentation for rowan, a package for working with quaternions! Quaternions form a number system
with various interesting properties, and they have a number of uses. This package provides tools for standard algebraic
operations on quaternions as well as a number of additional tools for e.g. measuring distances between quaternions,
interpolating between them, and performing basic point-cloud mapping. A particular focus of the rowan package is
working with unit quaternions, which are a popular means of representing rotations in 3D. In order to provide a unified
framework for working with the various rotation formalisms in 3D, rowan allows easy interconversion between these
formalisms.

To install rowan, first clone the repository from source. Once installed, the package can be installed using setuptools:

$ python setup.py install --user

Contents: 1

https://bitbucket.org/glotzer/rowan

rowan Documentation, Release 0.5.0

2 Contents:

CHAPTER 1

rowan

Overview

rowan.conjugate Conjugates an array of quaternions
rowan.inverse Computes the inverse of an array of quaternions
rowan.exp Computes the natural exponential function 𝑒𝑞 .
rowan.expb Computes the exponential function 𝑏𝑞 .
rowan.exp10 Computes the exponential function 10𝑞 .
rowan.log Computes the quaternion natural logarithm.
rowan.logb Computes the quaternion logarithm to some base b.
rowan.log10 Computes the quaternion logarithm base 10.
rowan.multiply Multiplies two arrays of quaternions
rowan.divide Divides two arrays of quaternions
rowan.norm Compute the quaternion norm
rowan.normalize Normalize quaternions
rowan.rotate Rotate a list of vectors by a corresponding set of quater-

nions
rowan.vector_vector_rotation Find the quaternion to rotate one vector onto another
rowan.from_euler Convert Euler angles to quaternions
rowan.to_euler Convert quaternions to Euler angles
rowan.from_matrix Convert the rotation matrices mat to quaternions
rowan.to_matrix Convert quaternions into rotation matrices.
rowan.from_axis_angle Find quaternions to rotate a specified angle about a spec-

ified axis
rowan.to_axis_angle Convert the quaternions in q to axis angle representa-

tions
rowan.from_mirror_plane Generate quaternions from mirror plane equations.
rowan.reflect Reflect a list of vectors by a corresponding set of quater-

nions
rowan.equal Check whether two sets of quaternions are equal.

Continued on next page

3

rowan Documentation, Release 0.5.0

Table 1 – continued from previous page
rowan.not_equal Check whether two sets of quaternions are not equal.
rowan.isfinite Test element-wise for finite quaternions.
rowan.isinf Test element-wise for infinite quaternions.
rowan.isnan Test element-wise for NaN quaternions.

Details

The core rowan package contains functions for operating on quaternions. The core package is focused on robust
implementations of key functions like multiplication, exponentiation, norms, and others. Simple functionality such
as addition is inherited directly from numpy due to the representation of quaternions as numpy arrays. Many core
numpy functions implemented for normal arrays are reimplemented to work on quaternions (such as allclose()
and isfinite()). Additionally, numpy broadcasting is enabled throughout rowan unless otherwise specified. This
means that any function of 2 (or more) quaternions can take arrays of shapes that do not match and return results
according to numpy’s broadcasting rules.

rowan.conjugate(q)
Conjugates an array of quaternions

Parameters q ((..,4) np.array) – Array of quaternions

Returns An array containing the conjugates of q

Example:

q_star = conjugate(q)

rowan.exp(q)
Computes the natural exponential function 𝑒𝑞 .

The exponential of a quaternion in terms of its scalar and vector parts 𝑞 = 𝑎+𝑣 is defined by exponential power
series: formula 𝑒𝑥 =

∑︀∞
𝑘=0

𝑥𝑘

𝑘! as follows:

𝑒𝑞 = 𝑒𝑎+𝑣 (1.1)

= 𝑒𝑎

(︃ ∞∑︁
𝑘=0

𝑣𝑘

𝑘!

)︃
(1.2)

= 𝑒𝑎
(︂
cos||𝑣||+ 𝑣

||𝑣||
sin||𝑣||

)︂
(1.3)

Parameters q ((..,4) np.array) – Quaternions

Returns Array of shape (. . .) containing exponentials of q

Example:

q_exp = exp(q)

rowan.expb(q, b)
Computes the exponential function 𝑏𝑞 .

We define the exponential of a quaternion to an arbitrary base relative to the exponential function 𝑒𝑞 using the
change of base formula as follows:

𝑏𝑞 = 𝑦 (1.4)

𝑞 = log𝑏 𝑦 =
ln 𝑦

ln 𝑏
(1.5)

𝑦 = 𝑒𝑞 ln 𝑏(1.6)

4 Chapter 1. rowan

https://docs.scipy.org/doc/numpy-1.14.0/user/basics.broadcasting.html

rowan Documentation, Release 0.5.0

Parameters q ((..,4) np.array) – Quaternions

Returns Array of shape (. . .) containing exponentials of q

Example:

q_exp = exp(q, 2)

rowan.exp10(q)
Computes the exponential function 10𝑞 .

Wrapper around expb().

Parameters q ((..,4) np.array) – Quaternions

Returns Array of shape (. . .) containing exponentials of q

Example:

q_exp = exp(q, 2)

rowan.log(q)
Computes the quaternion natural logarithm.

The natural of a quaternion in terms of its scalar and vector parts 𝑞 = 𝑎+𝑣 is defined by inverting the exponential
formula (see exp()), and is defined by the formula :math:‘ frac{x^k}{k!}‘ as follows:

ln(𝑞) = ln||𝑞||+ 𝑣

||𝑣||
arccos

(︂
𝑎

𝑞

)︂
(1.7)

Parameters q ((..,4) np.array) – Quaternions

Returns Array of shape (. . .) containing logarithms of q

Example:

ln_q = log(q)

rowan.logb(q, b)
Computes the quaternion logarithm to some base b.

The quaternion logarithm for arbitrary bases is defined using the standard change of basis formula relative to the
natural logarithm.

log𝑏 𝑞 = 𝑦 (1.8)
𝑞 = 𝑏𝑦(1.9)

ln 𝑞 = 𝑦 ln 𝑏(1.10)

𝑦 = log𝑏 𝑞 =
ln 𝑞

ln 𝑏
(1.11)

Parameters

• q ((..,4) np.array) – Quaternions

• n ((..) np.array) – Scalars to use as log bases

Returns Array of shape (. . .) containing logarithms of q

5

rowan Documentation, Release 0.5.0

Example:

log_q = log(q, 2)

rowan.log10(q)
Computes the quaternion logarithm base 10.

Wrapper around logb().

Parameters q ((..,4) np.array) – Quaternions

Returns Array of shape (. . .) containing logarithms of q

Example:

log_q = log(q, 2)

rowan.power(q, n)
Computes the power of a quaternion 𝑞𝑛.

Quaternions raised to a scalar power are defined according to the polar decomposition angle 𝜃 and vector �̂�: 𝑞𝑛 =
||𝑞||𝑛 (cos(𝑛𝜃) + �̂� sin(𝑛𝜃)). However, this can be computed more efficiently by noting that 𝑞𝑛 = exp(𝑛 ln(𝑞)).

Parameters

• q ((..,4) np.array) – Quaternions.

• n ((..) np.arrray) – Scalars to exponentiate quaternions with.

Returns Array of shape (. . .) containing of q

Example:

q_n = pow(q^n)

rowan.multiply(qi, qj)
Multiplies two arrays of quaternions

Note that quaternion multiplication is generally non-commutative.

Parameters

• qi ((..,4) np.array) – First set of quaternions

• qj ((..,4) np.array) – Second set of quaternions

Returns An array containing the products of row i of qi with column j of qj

Example:

qi = np.array([[1, 0, 0, 0]])
qj = np.array([[1, 0, 0, 0]])
prod = multiply(qi, qj)

rowan.norm(q)
Compute the quaternion norm

Parameters q ((..,4) np.array) – Quaternions to find norms for

Returns An array containing the norms for qi in q

Example:

q = np.random.rand(10, 4)
norms = norm(q)

6 Chapter 1. rowan

rowan Documentation, Release 0.5.0

rowan.normalize(q)
Normalize quaternions

Parameters q ((..,4) np.array) – Array of quaternions to normalize

Returns An array containing the unit quaternions q/norm(q)

Example:

q = np.random.rand(10, 4)
u = normalize(q)

rowan.from_mirror_plane(x, y, z)
Generate quaternions from mirror plane equations.

Reflection quaternions can be constructed of the from (0, 𝑥, 𝑦, 𝑧), i.e. with zero real component. The vector
(𝑥, 𝑦, 𝑧) is the normal to the mirror plane.

Parameters

• x ((..) np.array) – First planar component

• y ((..) np.array) – Second planar component

• z ((..) np.array) – Third planar component

Returns An array of quaternions corresponding to the provided reflections.

Example:

plane = (1, 2, 3)
quat_ref = from_mirror_plane(*plane)

rowan.reflect(q, v)
Reflect a list of vectors by a corresponding set of quaternions

For help constructing a mirror plane, see from_mirror_plane().

Parameters

• q ((..,4) np.array) – Quaternions to use for reflection

• v ((..,3) np.array) – Vectors to reflect.

Returns An array of the vectors in v reflected by q

Example:

q = np.random.rand(1, 4)
v = np.random.rand(1, 3)
v_rot = rotate(q, v)

rowan.rotate(q, v)
Rotate a list of vectors by a corresponding set of quaternions

Parameters

• q ((..,4) np.array) – Quaternions to rotate by.

• v ((..,3) np.array) – Vectors to rotate.

Returns An array of the vectors in v rotated by q

Example:

7

rowan Documentation, Release 0.5.0

q = np.random.rand(1, 4)
v = np.random.rand(1, 3)
v_rot = rotate(q, v)

rowan.vector_vector_rotation(v1, v2)
Find the quaternion to rotate one vector onto another

Parameters

• v1 ((..,3) np.array) – Vector to rotate

• v2 ((..,3) np.array) – Desired vector

Returns Array (. . . , 4) of quaternions that rotate v1 onto v2.

rowan.from_euler(alpha, beta, gamma, convention=’zyx’, axis_type=’intrinsic’)
Convert Euler angles to quaternions

For generality, the rotations are computed by composing a sequence of quaternions corresponding to axis-angle
rotations. While more efficient implementations are possible, this method was chosen to prioritize flexibility
since it works for essentially arbitrary Euler angles as long as intrinsic and extrinsic rotations are not intermixed.

Parameters

• alpha ((..) np.array) – Array of 𝛼 values in radians.

• beta ((..) np.array) – Array of 𝛽 values in radians.

• gamma ((..) np.array) – Array of 𝛾 values in radians.

• convention (str) – One of the 12 valid conventions xzx, xyx, yxy, yzy, zyz, zxz, xzy,
xyz, yxz, yzx, zyx, zxy

• axes (str) – Whether to use extrinsic or intrinsic rotations

Returns An array containing the converted quaternions

Example:

rands = np.random.rand(100, 3)
alpha, beta, gamma = rands.T
ql.from_euler(alpha, beta, gamma)

rowan.to_euler(q, convention=’zyx’, axis_type=’intrinsic’)
Convert quaternions to Euler angles

Euler angles are returned in the sequence provided, so in, e.g., the default case (‘zyx’), the angles returned are
for a rotation 𝑍(𝛼)𝑌 (𝛽)𝑋(𝛾).

Note: In all cases, the 𝛼 and 𝛾 angles are between ±𝜋. For proper Euler angles, 𝛽 is between 0 and 𝑝𝑖 degrees.
For Tait-Bryan angles, 𝛽 lies between ±𝜋/2.

For simplicity, quaternions are converted to matrices, which are then converted to their Euler angle representa-
tions. All equations for rotations are derived by considering compositions of the three elemental rotations about

8 Chapter 1. rowan

rowan Documentation, Release 0.5.0

the three Cartesian axes:

𝑅𝑥(𝜃) =

⎛⎝ 1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

⎞⎠
𝑅𝑦(𝜃) =

⎛⎝ cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 1 cos 𝜃

⎞⎠
𝑅𝑧(𝜃) =

⎛⎝ cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎞⎠
Extrinsic rotations are represented by matrix multiplications in the proper order, so 𝑧 − 𝑦 − 𝑥 is represented by
the multiplication 𝑋𝑌 𝑍 so that the system is rotated first about 𝑍, then about 𝑦, then finally 𝑋 . For intrinsic
rotations, the order of rotations is reversed, meaning that it matches the order in which the matrices actually
appear i.e. the 𝑧−𝑦′−𝑥′′ convention (yaw, pitch, roll) corresponds to the multiplication of matrices 𝑍𝑌 𝑋 . For
proof of the relationship between intrinsic and extrinsic rotations, see the Wikipedia page on Davenport chained
rotations.

For more information, see the Wikipedia page for Euler angles (specifically the section on converting between
representations).

Parameters

• q ((..,4) np.array) – Quaternions to transform

• convention (str) – One of the 6 valid conventions zxz, xyx, yzy, zyz, xzx, yxy

• axes (str) – Whether to use extrinsic or intrinsic

Returns An array with Euler angles (𝛼, 𝛽, 𝛾) as the last dimension (in radians)

Example:

rands = np.random.rand(100, 3)
alpha, beta, gamma = rands.T
ql.from_euler(alpha, beta, gamma)
alpha_return, beta_return, gamma_return = ql.to_euler(full)

rowan.from_matrix(mat, require_orthogonal=True)
Convert the rotation matrices mat to quaternions

Thhis method uses the algorithm described by Bar-Itzhack in [Itzhack00]. The idea is to construct a matrix K
whose largest eigenvalue corresponds to the desired quaternion. One of the strengths of the algorithm is that for
nonorthogonal matrices it gives the closest quaternion representation rather than failing outright.

Parameters mat ((..,3,3) np.array) – An array of rotation matrices

Returns An array containing the quaternion representations of the elements of mat (i.e. the same
elements of SO(3))

rowan.to_matrix(q, require_unit=True)
Convert quaternions into rotation matrices.

Uses the conversion described on Wikipedia.

Parameters q ((..,4) np.array) – An array of quaternions

Returns The array containing the matrix representations of the elements of q (i.e. the same elements
of SO(3))

9

https://en.wikipedia.org/wiki/Davenport_chained_rotations
https://en.wikipedia.org/wiki/Davenport_chained_rotations
https://en.wikipedia.org/wiki/Euler_angles
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix

rowan Documentation, Release 0.5.0

rowan.from_axis_angle(axes, angles)
Find quaternions to rotate a specified angle about a specified axis

Parameters

• axes ((..,3) np.array) – An array of vectors (the axes)

• angles (float or (..,1) np.array) – An array of angles in radians. Will be
broadcast to match shape of v as needed

Returns An array of the desired rotation quaternions

Example:

import numpy as np
axis = np.array([[1, 0, 0]])
ang = np.pi/3
quat = about_axis(axis, ang)

rowan.to_axis_angle(q)
Convert the quaternions in q to axis angle representations

Parameters q ((..,4) np.array) – An array of quaternions

Returns A tuple of np.arrays (axes, angles) where axes has shape (. . . ,3) and angles has shape
(. . . ,1). The angles are in radians

rowan.isnan(q)
Test element-wise for NaN quaternions.

A quaternion is defined as NaN if any elements are NaN.

Parameters q ((..,4) np.array) – Quaternions to check

Returns A boolean array of shape (. . .) indicating NaN.

rowan.isinf(q)
Test element-wise for infinite quaternions.

A quaternion is defined as infinite if any elements are infinite.

Parameters q ((..,4) np.array) – Quaternions to check

Returns A boolean array of shape (. . .) indicating infinite quaternions.

rowan.isfinite(q)
Test element-wise for finite quaternions.

A quaternion is defined as finite if all elements are finite.

Parameters q ((..,4) np.array) – Quaternions to check

Returns A boolean array of shape (. . .) indicating finite quaternions.

rowan.equal(p, q)
Check whether two sets of quaternions are equal.

This function is a simple wrapper that checks array equality and then aggregates along the quaternion axis.

Parameters

• p ((..,4) np.array) – First set of quaternions

• q ((..,4) np.array) – First set of quaternions

Returns A boolean array of shape (. . .) indicating equality.

10 Chapter 1. rowan

rowan Documentation, Release 0.5.0

rowan.not_equal(p, q)
Check whether two sets of quaternions are not equal.

This function is a simple wrapper that checks array equality and then aggregates along the quaternion axis.

Parameters

• p ((..,4) np.array) – First set of quaternions

• q ((..,4) np.array) – First set of quaternions

Returns A boolean array of shape (. . .) indicating inequality.

rowan.allclose(p, q, **kwargs)
Check whether two sets of quaternions are all close.

This is a direct wrapper of the corresponding numpy function.

Parameters

• p ((..,4) np.array) – First set of quaternions

• q ((..,4) np.array) – First set of quaternions

• **kwargs – Keyword arguments to pass to np.allclose

Returns Whether or not all quaternions are close

rowan.isclose(p, q, **kwargs)
Element-wise check of whether two sets of quaternions close.

This function is a simple wrapper that checks using the corresponding numpy function and then aggregates
along the quaternion axis.

Parameters

• p ((..,4) np.array) – First set of quaternions

• q ((..,4) np.array) – First set of quaternions

• **kwargs – Keyword arguments to pass to np.isclose

Returns A boolean array of shape (. . .)

rowan.inverse(q)
Computes the inverse of an array of quaternions

Parameters q ((..,4) np.array) – Array of quaternions

Returns An array containing the inverses of q

Example:

q_inv = inverse(q)

rowan.divide(qi, qj)
Divides two arrays of quaternions

Division is non-commutative; this function returns 𝑞𝑖𝑞−1
𝑗 .

Parameters

• qi ((..,4) np.array) – Dividend quaternion

• qj ((..,4) np.array) – Divisors quaternions

Returns An array containing the quotients of row i of qi with column j of qj

Example:

11

rowan Documentation, Release 0.5.0

qi = np.array([[1, 0, 0, 0]])
qj = np.array([[1, 0, 0, 0]])
prod = divide(qi, qj)

12 Chapter 1. rowan

CHAPTER 2

random

Overview

rowan.random.rand Generate random rotations uniformly
rowan.random.random_sample Generate random rotations unifo

Details

Various functions for generating random sets of rotation quaternions. Note that if you simply want random quaternions
not restricted to 𝑆𝑂(3) you can just generate these directly using numpy.random.rand(. . . 4). This subpackage is
entirely focused on generating rotation quaternions.

rowan.random.rand(*args)
Generate random rotations uniformly

This is a convenience function a la np.random.rand. If you want a function that takes a tuple as input, use
random_sample() instead.

Parameters shape (tuple) – The shape of the array to generate.

Returns Random quaternions of the shape provided with an additional axis of length 4.

rowan.random.random_sample(size=None)
Generate random rotations unifo

In general, sampling from the space of all quaternions will not generate uniform rotations. What we want is
a distribution that accounts for the density of rotations, i.e., a distribution that is uniform with respect to the
appropriate measure. The algorithm used here is detailed in [Shoe92].

Parameters size (tuple) – The shape of the array to generate

Returns Random quaternions of the shape provided with an additional axis of length 4

13

rowan Documentation, Release 0.5.0

14 Chapter 2. random

CHAPTER 3

Development Guide

3.1 Philosophy

The goal of rowan is to provide a flexible, easy-to-use, and scalable approach to dealing with rotation representations.
To ensure maximum flexibility, rowan operates entirely on numpy arrays, which serve as the de facto standard for
efficient multi-dimensional arrays in Python. To be available for a wide variety of applications, rowan aims to work
for arbitrarily shaped numpy arrays, mimicking numpy broadcasting to the extent possible. Functions for which this
broadcasting is not available should be documented as such.

Since rowan is designed to work everywhere, all hard dependencies aside from numpy are avoided, although soft
dependencies for specific functions are allowed. To avoid any dependencies on compilers or other software, all rowan
code is written in pure Python. This means that while rowan is intended to provide good performance, it may not
be the correct choice in cases where performance is critical. The package was written principally for use-cases where
quaternion operations are not the primary bottleneck, so it prioritizes portability, maintainability, and flexibility over
optimization.

3.1.1 PEP 20

In general, all code in rowan should follow the principles in PEP 20. In particular, prefer simple, explicit code where
possible, avoiding unnecessary convolution or complicated code that could be written more simply. Avoid writing
code that is not easy to parse up front.

Inline comments are highly encouraged; however, code should be written in a way that it could be understood without
comments. Comments such as “Set x to 10” are not helpful and simply clutter code. The most useful comments in
a package such as rowan are the ones that explain the underlying algorithm rather than the implementations, which
should be simple. For example, the comment “compute the spectral decomposition of A” is uninformative, since the
code itself should make this obvious, e.g, np.linalg.eigh. On the other hand, the comment “the eigenvector
corresponding to the largest eigenvalue of the A matrix is the quaternion” is instructive.

15

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://www.python.org/dev/peps/pep-0020/

rowan Documentation, Release 0.5.0

3.2 Source Code Conventions

All code in rowan should follow PEP 8 guidelines, which are the de facto standard for Python code. In addition, follow
the Google Python Style Guide, which is largely a superset of PEP 8. Note that Google has amended their standards
to match PEP 8’s 4 spaces guideline, so write code accordingly. In particular, write docstrings in the Google style.

Python example:

This is the correct style
def multiply(x, y):

"""Multiply two numbers

Args:
x (float): The first number
y (float): The second number

Returns:
The product

"""

This is the incorrect style
def multiply(x, y):

"""Multiply two numbers

:param x: The first number
:type x: float
:param y: The second number
:type y: float
:returns: The product
:rtype: float
"""

Documentation must be included for all files, and is then generated from the docstrings using sphinx.

3.3 Unit Tests

All code should include a set of unit tests which test for correct behavior. All tests should be placed in the tests
folder at the root of the project. These tests should be as simple as possible, testing a single function each, and they
should be kept as short as possible. Tests should also be entirely deterministic: if you are using a random set of objects
for testing, they should either be generated once and then stored in the tests/files folder, or the random number
generator in use should be seeded explicitly (e.g, numpy.random.seed or random.seed). Tests should be written in the
style of the standard Python unittest framework. At all times, tests should be executable by simply running python -m
unittest discover tests from the root of the project.

3.4 General Notes

• For consistency, NumPy should always be imported as np in code: import numpy as np.

• Avoid external dependencies where possible, and avoid introducing any hard dependencies. Dependencies other
than NumPy should always be soft, enabling the rest of the package to function as is.

16 Chapter 3. Development Guide

https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/pyguide.html
http://www.sphinx-doc.org/en/stable/index.html
https://docs.python.org/3/library/unittest.html

CHAPTER 4

License

rowan Open Source Software License Copyright 2010-2018 The Regents of
the University of Michigan All rights reserved.

rowan may contain modifications ("Contributions") provided, and to which
copyright is held, by various Contributors who have granted The Regents of the
University of Michigan the right to modify and/or distribute such Contributions.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

17

rowan Documentation, Release 0.5.0

18 Chapter 4. License

CHAPTER 5

Changelog

The format is based on Keep a Changelog. This project adheres to Semantic Versioning <http://semver.org/spec/v2.0.
0.html>‘_.

5.1 Unreleased

5.1.1 Added

• Various distance metrics on quaternion space.

• Quaternion interpolation.

5.1.2 Fixed

• Update empty __all__ variable in geometry to export functions.

5.2 v0.4.4 - 2018-04-10

5.2.1 Added

• Rewrote internals for upload to PyPI.

5.3 v0.4.3 - 2018-04-10

5.3.1 Fixed

• Typos in documentation.

19

http://keepachangelog.com/en/1.0.0/
http://semver.org/spec/v2.0.0.html
http://semver.org/spec/v2.0.0.html

rowan Documentation, Release 0.5.0

5.4 v0.4.2 - 2018-04-09

5.4.1 Added

• Support for Read The Docs and Codecov.

• Simplify CircleCI testing suite.

• Minor changes to README.

• Properly update this document.

5.5 v0.4.1 - 2018-04-08

5.5.1 Fixed

• Exponential for bases other than e are calculated correctly.

5.6 v0.4.0 - 2018-04-08

5.6.1 Added

• Add functions relating to exponentiation: exp, expb, exp10, log, logb, log10, power.

• Add core comparison functions for equality, closeness, finiteness.

5.7 v0.3.0 - 2018-03-31

5.7.1 Added

• Broadcasting works for all methods.

• Quaternion reflections.

• Random quaternion generation.

5.7.2 Changed

• Converting from Euler now takes alpha, beta, and gamma as separate args.

• Ensure more complete coverage.

5.8 v0.2.0 - 2018-03-08

5.8.1 Added

• Added documentation.

20 Chapter 5. Changelog

rowan Documentation, Release 0.5.0

• Add tox support.

• Add support for range of python and numpy versions.

• Add coverage support.

5.8.2 Changed

• Clean up CI.

• Ensure pep8 compliance.

5.9 v0.1.0 - 2018-02-26

5.9.1 Added

• Initial implementation of all functions.

5.9. v0.1.0 - 2018-02-26 21

rowan Documentation, Release 0.5.0

22 Chapter 5. Changelog

CHAPTER 6

Credits

The following people contributed to the rowan package.

Vyas Ramasubramani, University of Michigan - Lead developer.

• Initial design

• Core quaternion operations

• Sphinx docs support

23

rowan Documentation, Release 0.5.0

24 Chapter 6. Credits

CHAPTER 7

Support and Contribution

This package is hosted on Bitbucket. Please report any bugs or problems that you find on the issue tracker.

All contributions to rowan are welcomed! Please see the development guide for more information.

25

https://bitbucket.org/glotzer/rowan
https://bitbucket.org/glotzer/rowan/issues

rowan Documentation, Release 0.5.0

26 Chapter 7. Support and Contribution

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

27

rowan Documentation, Release 0.5.0

28 Chapter 8. Indices and tables

Bibliography

[Itzhack00] Itzhack Y. Bar-Itzhack. “New Method for Extracting the Quaternion from a Rotation Matrix”, Journal of
Guidance, Control, and Dynamics, Vol. 23, No. 6 (2000), pp. 1085-1087 https://doi.org/10.2514/2.4654

[Shoe92] Shoemake, K.: Uniform random rotations. In: D. Kirk, editor, Graphics Gems III, pages 124-132. Aca-
demic, New York, 1992.

29

https://doi.org/10.2514/2.4654

rowan Documentation, Release 0.5.0

30 Bibliography

Python Module Index

r
rowan, 4
rowan.random, 13

31

rowan Documentation, Release 0.5.0

32 Python Module Index

Index

A
allclose() (in module rowan), 11

C
conjugate() (in module rowan), 4

D
divide() (in module rowan), 11

E
equal() (in module rowan), 10
exp() (in module rowan), 4
exp10() (in module rowan), 5
expb() (in module rowan), 4

F
from_axis_angle() (in module rowan), 9
from_euler() (in module rowan), 8
from_matrix() (in module rowan), 9
from_mirror_plane() (in module rowan), 7

I
inverse() (in module rowan), 11
isclose() (in module rowan), 11
isfinite() (in module rowan), 10
isinf() (in module rowan), 10
isnan() (in module rowan), 10

L
log() (in module rowan), 5
log10() (in module rowan), 6
logb() (in module rowan), 5

M
multiply() (in module rowan), 6

N
norm() (in module rowan), 6

normalize() (in module rowan), 6
not_equal() (in module rowan), 10

P
power() (in module rowan), 6

R
rand() (in module rowan.random), 13
random_sample() (in module rowan.random), 13
reflect() (in module rowan), 7
rotate() (in module rowan), 7
rowan (module), 4
rowan.random (module), 13

T
to_axis_angle() (in module rowan), 10
to_euler() (in module rowan), 8
to_matrix() (in module rowan), 9

V
vector_vector_rotation() (in module rowan), 8

33

	rowan
	random
	Development Guide
	Philosophy
	Source Code Conventions
	Unit Tests
	General Notes

	License
	Changelog
	Unreleased
	v0.4.4 - 2018-04-10
	v0.4.3 - 2018-04-10
	v0.4.2 - 2018-04-09
	v0.4.1 - 2018-04-08
	v0.4.0 - 2018-04-08
	v0.3.0 - 2018-03-31
	v0.2.0 - 2018-03-08
	v0.1.0 - 2018-02-26

	Credits
	Support and Contribution
	Indices and tables
	Bibliography
	Python Module Index

