

rowan

	Getting Started

	Requirements

	Installation

	Quickstart

	Running Tests

	Running Benchmarks

	Building Documentation

	Support and Contribution

	Indices and tables

[image: ReadTheDocs] [http://rowan.readthedocs.io/en/latest/?badge=latest]
[image: CircleCI] [https://circleci.com/gh/glotzerlab/rowan]
[image: Codecov] [https://codecov.io/gh/glotzerlab/rowan]
[image: PyPI] [https://pypi.org/project/rowan/]
[image: Codacy] [https://www.codacy.com/app/vramasub/rowan?utm_source=github.com&utm_medium=referral&utm_content=glotzerlab/rowan&utm_campaign=Badge_Grade]
[image: Zenodo] [https://doi.org/10.5281/zenodo.1323676]
[image: JOSS] [https://doi.org/10.21105/joss.00787)]

Welcome to the documentation for rowan, a package for working with quaternions!
Quaternions, which form a number system with various interesting properties, were originally developed for classical mechanics.
Although they have since been largely displaced from this application by vector mathematics, they have become a standard method of representing rotations in three dimensions.
Quaternions are now commonly used for this purpose in various fields, including computer graphics and attitude control.

This package provides tools for standard algebraic operations on quaternions as well as a number of additional tools for e.g. measuring distances between quaternions, interpolating between them, and performing basic point-cloud mapping.
A particular focus of the rowan package is working with unit quaternions, which are a popular means of representing rotations in 3D.
In order to provide a unified framework for working with the various rotation formalisms in 3D, rowan allows easy interconversion between these formalisms.

Core features of rowan include (but are not limited to):

	Algebra (multiplication, exponentiation, etc).

	Derivatives and integrals of quaternions.

	Rotation and reflection operations, with conversions to and from matrices, axis angles, etc.

	Various distance metrics for quaternions.

	Basic point set registration, including solutions of the Procrustes problem
and the Iterative Closest Point algorithm.

	Quaternion interpolation (slerp, squad).

Modules:

	rowan

	calculus

	geometry

	interpolate

	mapping

	random

	Development Guide
	Design Philosophy and Code Guidelines

	Release Guide

Reference:

	License

	Changelog

	Credits

Getting Started

Requirements

The minimum requirements for using rowan are:

	Python = 2.7, >= 3.3

	NumPy >= 1.10

Installation

The recommended methods for installing rowan are using pip or conda.
To install the package from PyPI, execute:

$ pip install rowan --user

To install the package from conda, first add the conda-forge channel and
then install rowan:

$ conda config --add channels conda-forge
$ conda install rowan

If you wish, you may also install rowan by cloning the repository [https://github.com/glotzerlab/rowan] and running the setup script:

$ git clone https://github.com/glotzerlab/rowan.git
$ cd rowan
$ python setup.py install --user

Quickstart

This library can be used to work with quaternions by simply instantiating the appropriate NumPy arrays and passing them to the required functions.
For example:

import rowan
import numpy as np
one = np.array([10, 0, 0, 0])
one_unit = rowan.normalize(one)
assert(np.all(one_unit == np.array([1, 0, 0, 0])))
if not np.all(one_unit == rowan.multiply(one_unit, one_unit)):
 raise RuntimeError("Multiplication failed!")

one_vec = np.array([1, 0, 0])
rotated_vector = rowan.rotate(one_unit, one_vec)

mat = np.eye(3)
quat_rotate = rowan.from_matrix(mat)
alpha, beta, gamma = rowan.to_euler(quat_rotate)
quat_rotate_returned = rowan.from_euler(alpha, beta, gamma)
identity = rowan.to_matrix(quat_rotate_returned)

Running Tests

The package is currently tested for Python versions 2.7 and Python >= 3.3 on Unix-like systems.
Continuous integrated testing is performed using CircleCI on these Python versions with NumPy versions 1.10 and above.

To run the packaged unit tests, execute the following line from the root of the repository:

python -m unittest discover tests

To check test coverage, make sure the coverage module is installed:

pip install coverage

and then run the packaged unit tests with the coverage module:

coverage run -m unittest discover tests

Running Benchmarks

Benchmarks for the package are contained in a Jupyter notebook in the benchmarks folder in the root of the repository.
If you do not have or do not wish to use the notebook format, an equivalent Benchmarks.py script is also included.
The benchmarks compare rowan to two alternative packages, so you will need to install pyquaternion and numpy_quaternion if you wish to see those comparisons.

Building Documentation

You can also build this documentation from source if you clone the repository.
The documentation is written in reStructuredText [http://docutils.sourceforge.net/rst.html] and compiled using Sphinx [http://www.sphinx-doc.org/en/master/].
To build from source, first install Sphinx:

pip install sphinx sphinx_rtd_theme

You can then use Sphinx to create the actual documentation in either PDF or HTML form by running the following commands in the rowan root directory:

cd doc
make html # For html output
make latexpdf # For a LaTeX compiled PDF file
open build/html/index.html

Support and Contribution

This package is hosted on GitHub [https://github.com/glotzerlab/rowan].
Please report any bugs or problems that you find on the issue tracker [https://github.com/glotzerlab/rowan/issues].

All contributions to rowan are welcomed via pull requests!
Please see the development guide for more information on requirements for new code.

Indices and tables

	Index

	Module Index

	Search Page

rowan

Overview

	rowan.conjugate

	Conjugates an array of quaternions.

	rowan.inverse

	

	rowan.exp

	

	rowan.expb

	Computes the exponential function \(b^q\).

	rowan.exp10

	Computes the exponential function \(10^q\).

	rowan.log

	

	rowan.logb

	Computes the quaternion logarithm to some base b.

	rowan.log10

	Computes the quaternion logarithm base 10.

	rowan.multiply

	Multiplies two arrays of quaternions.

	rowan.divide

	Divides two arrays of quaternions.

	rowan.norm

	Compute the quaternion norm.

	rowan.normalize

	Normalize quaternions.

	rowan.rotate

	Rotate a list of vectors by a corresponding set of quaternions.

	rowan.vector_vector_rotation

	Find the quaternion to rotate one vector onto another.

	rowan.from_euler

	Convert Euler angles to quaternions.

	rowan.to_euler

	Convert quaternions to Euler angles.

	rowan.from_matrix

	Convert the rotation matrices mat to quaternions.

	rowan.to_matrix

	Convert quaternions into rotation matrices.

	rowan.from_axis_angle

	Find quaternions to rotate a specified angle about a specified axis.

	rowan.to_axis_angle

	Convert the quaternions in q to axis angle representations.

	rowan.from_mirror_plane

	Generate quaternions from mirror plane equations.

	rowan.reflect

	Reflect a list of vectors by a corresponding set of quaternions.

	rowan.equal

	Check whether two sets of quaternions are equal.

	rowan.not_equal

	Check whether two sets of quaternions are not equal.

	rowan.isfinite

	Test element-wise for finite quaternions.

	rowan.isinf

	Test element-wise for infinite quaternions.

	rowan.isnan

	Test element-wise for NaN quaternions.

Details

The core rowan package contains functions for operating on
quaternions. The core package is focused on robust implementations of key
functions like multiplication, exponentiation, norms, and others. Simple
functionality such as addition is inherited directly from NumPy due to
the representation of quaternions as NumPy arrays. Many core NumPy functions
implemented for normal arrays are reimplemented to work on quaternions (
such as allclose() and isfinite()). Additionally, NumPy
broadcasting [https://docs.scipy.org/doc/numpy-1.14.0/user/basics.broadcasting.html#]
is enabled throughout rowan unless otherwise specified. This means that
any function of 2 (or more) quaternions can take arrays of shapes that do
not match and return results according to NumPy’s broadcasting rules.

	
rowan.allclose(p, q, **kwargs)

	Check whether two sets of quaternions are all close.

This is a direct wrapper of the corresponding NumPy function.

	Parameters

	
	p ((..,4) np.array) – First array of quaternions.

	q ((..,4) np.array) – Second array of quaternions.

	**kwargs – Keyword arguments to pass to np.allclose.

	Returns

	Boolean indicating whether or not all quaternions are close.

Example:

rowan.allclose([1, 0, 0, 0], [1, 0, 0, 0])

	
rowan.conjugate(q)

	Conjugates an array of quaternions.

	Parameters

	q ((..,4) np.array) – Array of quaternions.

	Returns

	Array of shape (…) containing conjugates of q.

Example:

q_star = rowan.conjugate([1, 0, 0, 0])

	
rowan.divide(qi, qj)

	Divides two arrays of quaternions.

Division is non-commutative; this function returns
\(q_i q_j^{-1}\).

	Parameters

	
	qi ((..,4) np.array) – Dividend quaternions.

	qj ((..,4) np.array) – Divisor quaternions.

	Returns

	Array of shape (…) containing element-wise quotients of qi and qj.

Example:

quot = rowan.divide([1, 0, 0, 0], [2, 0, 0, 0])

	
rowan.expb(q, b)

	Computes the exponential function \(b^q\).

We define the exponential of a quaternion to an arbitrary base relative
to the exponential function \(e^q\) using the change of base
formula as follows:

\[\begin{split}\begin{align}
 b^q &= y \\
 q &= \log_b y = \frac{\ln y}{\ln b}\\
 y &= e^{q\ln b}
\end{align}\end{split}\]

	Parameters

	q ((..,4) np.array) – Array of quaternions.

	Returns

	Array of shape (…) containing exponentials of q.

Example:

q_exp = rowan.expb([1, 0, 0, 0], 2)

	
rowan.exp10(q)

	Computes the exponential function \(10^q\).

Wrapper around expb().

	Parameters

	q ((..,4) np.array) – Array of quaternions.

	Returns

	Array of shape (…) containing exponentials of q.

Example:

q_exp = rowan.exp10([1, 0, 0, 0])

	
rowan.equal(p, q)

	Check whether two sets of quaternions are equal.

This function is a simple wrapper that checks array
equality and then aggregates along the quaternion axis.

	Parameters

	
	p ((..,4) np.array) – First array of quaternions.

	q ((..,4) np.array) – Second array of quaternions.

	Returns

	A boolean array of shape (…) indicating equality.

Example:

rowan.equal([1, 0, 0, 0], [1, 0, 0, 0])

	
rowan.from_axis_angle(axes, angles)

	Find quaternions to rotate a specified angle about a specified axis.

	Parameters

	
	axes ((..,3) np.array) – An array of vectors (the axes).

	angles (float or (..,1) np.array) – An array of angles in radians.
Will be broadcast to match shape of v as needed.

	Returns

	Array of shape (…, 4) containing the corresponding rotation
quaternions.

Example:

quat = rowan.from_axis_angle([[1, 0, 0]], np.pi/3)

	
rowan.from_euler(alpha, beta, gamma, convention='zyx', axis_type='intrinsic')

	Convert Euler angles to quaternions.

For generality, the rotations are computed by composing a sequence of
quaternions corresponding to axis-angle rotations. While more efficient
implementations are possible, this method was chosen to prioritize
flexibility since it works for essentially arbitrary Euler angles as
long as intrinsic and extrinsic rotations are not intermixed.

	Parameters

	
	alpha ((..) np.array) – Array of \(\alpha\) values in radians.

	beta ((..) np.array) – Array of \(\beta\) values in radians.

	gamma ((..) np.array) – Array of \(\gamma\) values in radians.

	convention (str) – One of the 12 valid conventions xzx, xyx,
yxy, yzy, zyz, zxz, xzy, xyz, yxz, yzx, zyx, zxy.

	axes (str) – Whether to use extrinsic or intrinsic rotations.

	Returns

	Array of shape (…, 4) containing quaternions corresponding to the
input angles.

Example:

ql = rowan.from_euler(0.3, 0.5, 0.7)

	
rowan.from_matrix(mat, require_orthogonal=True)

	Convert the rotation matrices mat to quaternions.

This method uses the algorithm described by Bar-Itzhack in [Itzhack00].
The idea is to construct a matrix K whose largest eigenvalue corresponds
to the desired quaternion. One of the strengths of the algorithm is that
for nonorthogonal matrices it gives the closest quaternion representation
rather than failing outright.

	Itzhack00

	Itzhack Y. Bar-Itzhack. “New Method for Extracting the
Quaternion from a Rotation Matrix”, Journal of Guidance, Control, and
Dynamics, Vol. 23, No. 6 (2000), pp. 1085-1087
https://doi.org/10.2514/2.4654

	Parameters

	mat ((..,3,3) np.array) – An array of rotation matrices.

	Returns

	Array of shape (…, 4) containing the corresponding rotation
quaternions.

Example:

ql = rowan.from_matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

	
rowan.from_mirror_plane(x, y, z)

	Generate quaternions from mirror plane equations.

Reflection quaternions can be constructed from the form
\((0, x, y, z)\), i.e. with zero real component. The vector
\((x, y, z)\) is the normal to the mirror plane.

	Parameters

	
	x ((..) np.array) – First planar component.

	y ((..) np.array) – Second planar component.

	z ((..) np.array) – Third planar component.

	Returns

	Array of shape (…) containing quaternions reflecting about the input
plane \((x, y, z)\).

Example:

quat_ref = rowan.from_mirror_plane(*(1, 2, 3))

	
rowan.isclose(p, q, **kwargs)

	Element-wise check of whether two sets of quaternions are close.

This function is a simple wrapper that checks using the
corresponding NumPy function and then aggregates along
the quaternion axis.

	Parameters

	
	p ((..,4) np.array) – First array of quaternions.

	q ((..,4) np.array) – Second array of quaternions.

	**kwargs – Keyword arguments to pass to np.isclose.

	Returns

	A boolean array of shape (…) indicating which quaternions are close.

Example:

rowan.allclose([[1, 0, 0, 0]], [[1, 0, 0, 0]])

	
rowan.isinf(q)

	Test element-wise for infinite quaternions.

A quaternion is defined as infinite if any elements are infinite.

	Parameters

	q ((..,4) np.array) – Array of quaternions

	Returns

	A boolean array of shape (…) indicating infinite quaternions.

Example:

import numpy as np
rowan.isinf([np.nan, 0, 0, 0])

	
rowan.isfinite(q)

	Test element-wise for finite quaternions.

A quaternion is defined as finite if all elements are finite.

	Parameters

	q ((..,4) np.array) – Array of quaternions.

	Returns

	A boolean array of shape (…) indicating finite quaternions.

Example:

rowan.isfinite([1, 0, 0, 0])

	
rowan.isnan(q)

	Test element-wise for NaN quaternions.

A quaternion is defined as NaN if any elements are NaN.

	Parameters

	q ((..,4) np.array) – Array of quaternions.

	Returns

	A boolean array of shape (…) indicating whether or not the input
quaternions were NaN.

Example:

import numpy as np
rowan.isnan([np.nan, 0, 0, 0])

	
rowan.is_unit(q)

	Check if all input quaternions have unit norm.

	Parameters

	q ((..,4) np.array) – Array of quaternions.

	Returns

	Whether or not all inputs are unit quaternions

	Return type

	bool

Example:

rowan.is_unit([10, 0, 0, 0])

	
rowan.logb(q, b)

	Computes the quaternion logarithm to some base b.

The quaternion logarithm for arbitrary bases is defined using the
standard change of basis formula relative to the natural logarithm.

\[\begin{split}\begin{align}
 \log_b q &= y \\
 q &= b^y \\
 \ln q &= y \ln b \\
 y &= \log_b q = \frac{\ln q}{\ln b}
\end{align}\end{split}\]

	Parameters

	
	q ((..,4) np.array) – Array of quaternions.

	n ((..) np.array) – Scalars to use as log bases.

	Returns

	Array of shape (…) containing logarithms of q.

Example:

log2_q = rowan.logb([1, 0, 0, 0], 2)

	
rowan.log10(q)

	Computes the quaternion logarithm base 10.

Wrapper around logb().

	Parameters

	q ((..,4) np.array) – Array of quaternions.

	Returns

	Array of shape (…) containing logarithms of q.

Example:

log10_q = rowan.log10([1, 0, 0, 0])

	
rowan.multiply(qi, qj)

	Multiplies two arrays of quaternions.

Note that quaternion multiplication is generally non-commutative, so the
first and second set of quaternions must be passed in the correct order.

	Parameters

	
	qi ((..,4) np.array) – Array of left quaternions.

	qj ((..,4) np.array) – Array of right quaternions.

	Returns

	Array of shape (…) containing element-wise products of q.

Example:

prod = rowan.multiply([1, 0, 0, 0], [2, 0, 0, 0])

	
rowan.norm(q)

	Compute the quaternion norm.

	Parameters

	q ((..,4) np.array) – Array of quaternions.

	Returns

	Array of shape (…) containing norms of q.

Example:

norms = rowan.norm([10, 0, 0, 0])

	
rowan.normalize(q)

	Normalize quaternions.

	Parameters

	q ((..,4) np.array) – Array of quaternions.

	Returns

	Array of shape (…) of normalized quaternions.

Example:

u = rowan.normalize([10, 0, 0, 0])

	
rowan.not_equal(p, q)

	Check whether two sets of quaternions are not equal.

This function is a simple wrapper that checks array
equality and then aggregates along the quaternion axis.

	Parameters

	
	p ((..,4) np.array) – First array of quaternions.

	q ((..,4) np.array) – Second array of quaternions.

	Returns

	A boolean array of shape (…) indicating inequality.

Example:

rowan.not_equal([-1, 0, 0, 0], [1, 0, 0, 0])

	
rowan.reflect(q, v)

	Reflect a list of vectors by a corresponding set of quaternions.

For help constructing a mirror plane, see from_mirror_plane().

	Parameters

	
	q ((..,4) np.array) – Array of quaternions.

	v ((..,3) np.array) – Array of vectors.

	Returns

	Array of shape (…, 3) containing reflections of v.

Example:

v_reflected = rowan.reflect([1, 0, 0, 0], [1, 1, 1])

	
rowan.rotate(q, v)

	Rotate a list of vectors by a corresponding set of quaternions.

	Parameters

	
	q ((..,4) np.array) – Array of quaternions.

	v ((..,3) np.array) – Array of vectors.

	Returns

	Array of shape (…, 3) containing rotations of v.

Example:

v_rot = rowan.rotate([1, 0, 0, 0], [1, 1, 1])

	
rowan.to_axis_angle(q)

	Convert the quaternions in q to axis angle representations.

	Parameters

	q ((..,4) np.array) – An array of quaternions.

	Returns

	A tuple of np.arrays (axes, angles) where axes has
shape (…,3) and angles has shape (…,1). The
angles are in radians.

Example:

quat = rowan.to_axis_angle([[1, 0, 0, 0]])

	
rowan.to_euler(q, convention='zyx', axis_type='intrinsic')

	Convert quaternions to Euler angles.

Euler angles are returned in the sequence provided, so in, e.g.,
the default case (‘zyx’), the angles returned are for a rotation
\(Z(\alpha) Y(\beta) X(\gamma)\).

Note

In all cases, the \(\alpha\) and \(\gamma\) angles are
between \(\pm \pi\). For proper Euler angles, \(\beta\)
is between \(0\) and \(pi\) degrees. For Tait-Bryan
angles, \(\beta\) lies between \(\pm\pi/2\).

For simplicity, quaternions are converted to matrices, which are
then converted to their Euler angle representations. All equations
for rotations are derived by considering compositions of the three
elemental rotations about the three Cartesian axes:

\begin{eqnarray*}
R_x(\theta) =& \left(\begin{array}{ccc}
 1 & 0 & 0 \\
 0 & \cos \theta & -\sin \theta \\
 0 & \sin \theta & \cos \theta \\
 \end{array}\right)\\
R_y(\theta) =& \left(\begin{array}{ccc}
 \cos \theta & 0 & \sin \theta \\
 0 & 1 & 0 \\
 -\sin \theta & 0 & \cos \theta \\
 \end{array}\right)\\
R_z(\theta) =& \left(\begin{array}{ccc}
 \cos \theta & -\sin \theta & 0 \\
 \sin \theta & \cos \theta & 0 \\
 0 & 0 & 1 \\
 \end{array}\right)\\
\end{eqnarray*}
Extrinsic rotations are represented by matrix multiplications in
the proper order, so \(z-y-x\) is represented by the
multiplication \(XYZ\) so that the system is rotated first
about \(Z\), then about \(Y\), then finally \(X\).
For intrinsic rotations, the order of rotations is reversed,
meaning that it matches the order in which the matrices actually
appear i.e. the \(z-y'-x''\) convention (yaw, pitch, roll)
corresponds to the multiplication of matrices \(ZYX\).
For proof of the relationship between intrinsic and extrinsic
rotations, see the Wikipedia page on Davenport chained rotations [https://en.wikipedia.org/wiki/Davenport_chained_rotations].

For more information, see the Wikipedia page for
Euler angles [https://en.wikipedia.org/wiki/Euler_angles]
(specifically the section on converting between representations).

Warning

Euler angles are a highly problematic representation for a number of
reasons, not least of which is the large number of possible conventions
and their relative imprecision when compared to using quaternions (or
axis-angle representations). If possible, you should avoid Euler angles
and work with quaternions instead. If Euler angles are required, note
that they are susceptible to gimbal lock [https://en.wikipedia.org/wiki/Gimbal_lock], which leads to ambiguity
in the representation of a given rotation. To address this issue, in
cases where gimbal lock arises, to_euler() adopts the
convention that \(\gamma=0\) and represents the rotation entirely
in terms of \(\beta\) and \(\alpha\).

	Parameters

	
	q ((..,4) np.array) – Quaternions to transform.

	convention (str) – One of the 6 valid conventions zxz,
xyx, yzy, zyz, xzx, yxy.

	axes (str) – Whether to use extrinsic or intrinsic.

	Returns

	math:(alpha, beta,
gamma) as the last dimension (in radians).

	Return type

	Array of shape (.., 3) containing Euler angles

Example:

import numpy as np
rands = np.random.rand(100, 3)
alpha, beta, gamma = rands.T
ql = rowan.from_euler(alpha, beta, gamma)
alpha_return, beta_return, gamma_return = np.split(
 rowan.to_euler(ql), 3, axis = 1)
assert(np.allclose(alpha_return.flatten(), alpha))
assert(np.allclose(beta_return.flatten(), beta))
assert(np.allclose(gamma_return.flatten(), gamma))

	
rowan.to_matrix(q, require_unit=True)

	Convert quaternions into rotation matrices.

Uses the conversion described on Wikipedia [https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix].

	Parameters

	q ((..,4) np.array) – An array of quaternions.

	Returns

	Array of shape (…, 3, 3) containing the corresponding rotation
matrices.

Example:

ql = rowan.to_matrix([1, 0, 0, 0])

	
rowan.vector_vector_rotation(v1, v2)

	Find the quaternion to rotate one vector onto another.

	Parameters

	
	v1 ((..,3) np.array) – Array of vectors to rotate.

	v2 ((..,3) np.array) – Array of vector to rotate onto.

	Returns

	Array of shape (…, 4) containing quaternions that rotate v1 onto v2.

Example:

q_rot = rowan.vector_vector_rotation([1, 0, 0], [0, 1, 0])

calculus

Overview

	rowan.calculus.derivative

	Compute the instantaneous derivative of unit quaternions, which is defined as

	rowan.calculus.integrate

	Integrate unit quaternions by angular velocity using the following equation:

Details

This subpackage provides the ability to compute the derivative and
integral of a quaternion.

	
rowan.calculus.derivative(q, v)

	Compute the instantaneous derivative of unit quaternions, which is
defined as

\[\dot{q} = \frac{1}{2} \boldsymbol{v} q\]

A derivation is provided here [http://web.cs.iastate.edu/~cs577/handouts/quaternion.pdf].
For a more thorough explanation, see this page [https://fgiesen.wordpress.com/2012/08/24/quaternion-differentiation/].

	Parameters

	
	q ((..,4) np.array) – Array of quaternions.

	v ((..,3) np.array) – Array of angular velocities.

	Returns

	Array of shape (…, 4) containing element-wise derivatives of q.

Example:

q_prime = rowan.calculus.derivative([1, 0, 0, 0], [1, 0, 0])

	
rowan.calculus.integrate(q, v, dt)

	Integrate unit quaternions by angular velocity using the following
equation:

\[\dot{q} = \exp\left(\frac{1}{2} \boldsymbol{v} dt\right) q\]

Note that this formula uses the quaternion exponential [https://en.wikipedia.org/wiki/Quaternion#Exponential,_logarithm,_and_power], so the argument
to the exponential (which appears to be a vector) is promoted to a
quaternion with scalar part 0 before the exponential is taken.
A concise derivation is provided in this paper [https://www.researchgate.net/publication/260466470_Geometric_Integration_of_Quaternions].
This webpage [https://www.ashwinnarayan.com/post/how-to-integrate-quaternions/] contains a more thorough explanation.

	Parameters

	
	q ((..,4) np.array) – Array of quaternions.

	v ((..,3) np.array) – Array of angular velocities.

	dt ((..) np.array) – Array of timesteps.

	Returns

	Array of shape (…, 4) containing element-wise integrals of q.

Example:

v_next = rowan.calculus.integrate([1, 0, 0, 0], [0, 0, 1e-2], 1)

geometry

Overview

	rowan.geometry.distance

	Determine the distance between quaternions p and q.

	rowan.geometry.sym_distance

	Determine the distance between quaternions p and q.

	rowan.geometry.riemann_exp_map

	Compute the exponential map on the Riemannian manifold \(\mathbb{H}^*\) of nonzero quaterions.

	rowan.geometry.riemann_log_map

	Compute the log map on the Riemannian manifold \(\mathbb{H}^*\) of nonzero quaterions.

	rowan.geometry.intrinsic_distance

	Compute the intrinsic distance between quaternions on the manifold of quaternions.

	rowan.geometry.sym_intrinsic_distance

	Compute the intrinsic distance between quaternions on the manifold of quaternions.

	rowan.geometry.angle

	Compute the angle of rotation of a quaternion.

Details

This subpackage provides various tools for working with the geometric
representation of quaternions. A particular focus is computing the distance
between quaternions. These distance computations can be complicated,
particularly good metrics for distance on the Riemannian manifold representing
quaternions do not necessarily coincide with good metrics for similarities
between rotations. An overview of distance measurements can be found in
this paper [https://link.springer.com/article/10.1007/s10851-009-0161-2].

	
rowan.geometry.distance(p, q)

	Determine the distance between quaternions p and q.

This is the most basic distance that can be defined on
the space of quaternions; it is the metric induced by
the norm on this vector space
\(\rho(p, q) = \lvert\lvert p - q \rvert\rvert\).

When applied to unit quaternions, this function produces
values in the range \([0, 2]\).

	Parameters

	
	p ((..,4) np.array) – First array of quaternions.

	q ((..,4) np.array) – Second array of quaternions.

	Returns

	Array of shape (…) containing the element-wise distances between the
two sets of quaternions.

Example:

rowan.geometry.distance([1, 0, 0, 0], [1, 0, 0, 0])

	
rowan.geometry.sym_distance(p, q)

	Determine the distance between quaternions p and q.

This is a symmetrized version of distance() that
accounts for the fact that \(p\) and \(-p\) represent
identical rotations. This makes it a useful measure of rotation
similarity.

	Parameters

	
	p ((..,4) np.array) – First array of quaternions.

	q ((..,4) np.array) – Second array of quaternions.

When applied to unit quaternions, this function produces
values in the range \([0, \sqrt{2}]\).

	Returns

	Array of shape (…) containing the element-wise symmetrized distances
between the two sets of quaternions.

Example:

rowan.geometry.sym_distance([1, 0, 0, 0], [-1, 0, 0, 0])

	
rowan.geometry.riemann_exp_map(p, v)

	Compute the exponential map on the Riemannian manifold
\(\mathbb{H}^*\) of nonzero quaterions.

The nonzero quaternions form a Lie algebra \(\mathbb{H}^*\) that
is also a Riemannian manifold. In general, given a point \(p\) on a
Riemannian manifold \(\mathcal{M}\) and an element of the tangent
space at \(p\), \(v \in T_p\mathcal{M}\), the Riemannian exponential
map is defined by the geodesic starting at \(p\) and tracing out
an arc of length \(v\) in the direction of \(v\). This function
computes the endpoint of that path (which is itself a quaternion).

Explicitly, we define the exponential map as

\[\begin{equation}
 \textrm{Exp}_p(v) = p\exp(v)
\end{equation}\]

	Parameters

	
	p ((..,4) np.array) – Points on the manifold of quaternions.

	v ((..,4) np.array) – Tangent vectors to traverse.

	Returns

	Array of shape (…, 4) containing the endpoints of the geodesic
starting from \(p\) and traveling a distance \(\lvert\lvert
v\rvert\rvert\) in the direction of \(v\).

Example:

rowan.geometry.riemann_exp_map([1, 0, 0, 0], [-1, 0, 0, 0])

	
rowan.geometry.riemann_log_map(p, q)

	Compute the log map on the Riemannian manifold \(\mathbb{H}^*\) of
nonzero quaterions.

This function inverts riemann_exp_map(). See that function for more
details. In brief, given two quaternions p and q, this method returns a
third quaternion parameterizing the geodesic passing from p to q. It is
therefore an important measure of the distance between the two input
quaternions.

	Parameters

	
	p ((..,4) np.array) – Starting points (quaternions).

	q ((..,4) np.array) – Endpoints (quaternions).

	Returns

	Array of shape (…, 4) containing quaternions pointing from p to q with
magnitudes equal to the length of the geodesics joining these
quaternions.

Example:

rowan.geometry.riemann_log_map([1, 0, 0, 0], [-1, 0, 0, 0])

	
rowan.geometry.intrinsic_distance(p, q)

	Compute the intrinsic distance between quaternions on the manifold of
quaternions.

The quaternion distance is determined as the length of the quaternion
joining the two quaternions (see riemann_log_map()). Rather
than computing this directly, however, as shown in [Huynh09] we can
compute this distance using the following equivalence:

\[\begin{equation}
 \lvert\lvert \log(p q^{-1}) \rvert\rvert =
 2\cos(\lvert\langle p, q \rangle\rvert)
\end{equation}\]

When applied to unit quaternions, this function produces
values in the range \([0, \pi]\).

	Huynh09

	Huynh DQ (2009) Metrics for 3D rotations: comparison and
analysis. J Math Imaging Vis 35(2):155-164

	Parameters

	
	p ((..,4) np.array) – First array of quaternions.

	q ((..,4) np.array) – Second array of quaternions.

	Returns

	Array of shape (…) containing the element-wise intrinsic distances
between the two sets of quaternions.

Example:

rowan.geometry.intrinsic_distance([1, 0, 0, 0], [-1, 0, 0, 0])

	
rowan.geometry.sym_intrinsic_distance(p, q)

	Compute the intrinsic distance between quaternions on the manifold of
quaternions.

This is a symmetrized version of intrinsic_distance() that
accounts for the double cover \(SU(2)\rightarrow SO(3)\), making it a
more useful metric for rotation similarity.

When applied to unit quaternions, this function produces
values in the range \([0, \frac{\pi}{2}]\).

	Parameters

	
	p ((..,4) np.array) – First array of quaternions.

	q ((..,4) np.array) – Second array of quaternions.

	Returns

	Array of shape (…) containing the element-wise symmetrized intrinsic
distances between the two sets of quaternions.

Example:

rowan.geometry.sym_intrinsic_distance([1, 0, 0, 0], [-1, 0, 0, 0])

	
rowan.geometry.angle(p)

	Compute the angle of rotation of a quaternion.

Note that this is identical to
intrinsic_distance(p, np.array([1, 0, 0, 0])).

	Parameters

	p ((..,4) np.array) – Array of quaternions.

	Returns

	Array of shape (…) containing the element-wise angles traced out by
these rotations.

Example:

rowan.geometry.angle([1, 0, 0, 0])

interpolate

Overview

	rowan.interpolate.slerp

	Spherical linear interpolation between p and q.

	rowan.interpolate.slerp_prime

	Compute the derivative of slerp.

	rowan.interpolate.squad

	Cubically interpolate between p and q.

Details

The rowan package provides a simple interface to slerp, the standard method
of quaternion interpolation for two quaternions.

	
rowan.interpolate.slerp(q0, q1, t, ensure_shortest=True)

	Spherical linear interpolation between p and q.

The slerp formula [https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp]
can be easily expressed in terms of the quaternion exponential (see
rowan.exp()).

	Parameters

	
	q0 ((..,4) np.array) – First array of quaternions.

	q1 ((..,4) np.array) – Second array of quaternions.

	t ((..) np.array) – Interpolation parameter \(\in [0, 1]\)

	ensure_shortest (bool) – Flip quaternions to ensure we traverse the
geodesic in the shorter (\(<180^{\circ}\)) direction.

Note

Given inputs such that \(t\notin [0, 1]\), the values outside the
range are simply assumed to be 0 or 1 (depending on which side of the
interval they fall on).

	Returns

	Array of shape (…, 4) containing the element-wise interpolations
between p and q.

Example:

import numpy as np
q_slerp = rowan.interpolate.slerp(
 [[1, 0, 0, 0]], [[np.sqrt(2)/2, np.sqrt(2)/2, 0, 0]], 0.5)

	
rowan.interpolate.slerp_prime(q0, q1, t, ensure_shortest=True)

	Compute the derivative of slerp.

	Parameters

	
	q0 ((..,4) np.array) – First set of quaternions.

	q1 ((..,4) np.array) – Second set of quaternions.

	t ((..) np.array) – Interpolation parameter \(\in [0, 1]\)

	ensure_shortest (bool) – Flip quaternions to ensure we traverse the
geodesic in the shorter (\(<180^{\circ}\)) direction

	Returns

	An array of shape (…, 4) containing the element-wise derivatives of
interpolations between p and q.

Example:

import numpy as np
q_slerp_prime rowan.interpolate.slerp_prime(
 [[1, 0, 0, 0]], [[np.sqrt(2)/2, np.sqrt(2)/2, 0, 0]], 0.5)

	
rowan.interpolate.squad(p, a, b, q, t)

	Cubically interpolate between p and q.

The SQUAD formula is just a repeated application of Slerp between multiple
quaternions as originally derived in [Shoemake85]:

\[\begin{equation}
 \textrm{squad}(p, a, b, q, t) = \textrm{slerp}(p, q, t)
 \left(\textrm{slerp}(p, q, t)^{-1}\textrm{slerp}(a, b, t)
 \right)^{2t(1-t)}
\end{equation}\]

	Shoemake85

	Ken Shoemake. Animating rotation with quaternion curves.
SIGGRAPH Comput. Graph., 19(3):245-254, July 1985.

	Parameters

	
	p ((..,4) np.array) – First endpoint of interpolation.

	a ((..,4) np.array) – First control point of interpolation.

	b ((..,4) np.array) – Second control point of interpolation.

	q ((..,4) np.array) – Second endpoint of interpolation.

	t ((..) np.array) – Interpolation parameter \(t \in [0, 1]\).

	Returns

	An array containing the element-wise interpolations between p and q.

Example:

import numpy as np
q_squad = rowan.interpolate.squad(
 [1, 0, 0, 0], [np.sqrt(2)/2, np.sqrt(2)/2, 0, 0],
 [0, np.sqrt(2)/2, np.sqrt(2)/2, 0],
 [0, 0, np.sqrt(2)/2, np.sqrt(2)/2], 0.5)

mapping

Overview

	rowan.mapping.kabsch

	Find the optimal rotation and translation to map between two sets of points.

	rowan.mapping.davenport

	Find the optimal rotation and translation to map between two sets of points.

	rowan.mapping.procrustes

	Solve the orthogonal Procrustes problem with algorithmic options.

	rowan.mapping.icp

	Find best mapping using the Iterative Closest Point algorithm.

Details

The general space of problems that this subpackage addresses is a small subset
of the broader space of point set registration [https://en.wikipedia.org/wiki/Point_set_registration], which attempts to
optimally align two sets of points. In general, this mapping can be nonlinear.
The restriction of this superposition to linear transformations composed of
translation, rotation, and scaling is the study of Procrustes superposition,
the first step in the field of Procrustes analysis [https://en.wikipedia.org/wiki/Procrustes_analysis#Shape_comparison], which
performs the superposition in order to compare two (or more) shapes.

If points in the two sets have a known correspondence, the problem is much
simpler. Various precise formulations exist that admit analytical formulations,
such as the orthogonal Procrustes problem [https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem] searching for an
orthogonal transformation

\[\begin{equation}
 R = \textrm{argmin}_\Omega \lvert\lvert\Omega A - B\rvert\rvert_F,\,\,
 \Omega^T\Omega = \mathbb{1}
\end{equation}\]

or, if a pure rotation is desired, Wahba’s problem

\[\begin{equation}
 \min_{\boldsymbol{R} \in SO(3)} \frac{1}{2} \sum_{k=1}^N a_k \lvert
 \lvert \boldsymbol{w}_k - \boldsymbol{R} \boldsymbol{v}_k \rvert\rvert^2
\end{equation}\]

Numerous algorithms to solve this problem exist, particularly in the field of
aerospace engineering and robotics where this problem must be solved on embedded
systems with limited processing. Since that constraint does not apply here, this
package simply implements some of the most stable known methods irrespective of
cost. In particular, this package contains the Kabsch algorithm, which solves
Wahba’s problem using an SVD in the vein of Peter Schonemann’s original
solution [https://link.springer.com/article/10.1007/BF02289451] to
the orthogonal Procrustes problem. Additionally this package contains the
Davenport q method [https://ntrs.nasa.gov/search.jsp?R=19670009376], which
works directly with quaternions. The most popular algorithms for Wahba’s problem
are variants of the q method that are faster at the cost of some stability; we
omit these here.

In addition, rowan.mapping also includes some functionality for
more general point set registration. If a point cloud has a set of known
symmetries, these can be tested explicitly by rowan.mapping to
find the smallest rotation required for optimal mapping. If no such
correspondence is knowna at all, then the iterative closest point algorithm can
be used to approximate the mapping.

	
rowan.mapping.kabsch(X, Y, require_rotation=True)

	Find the optimal rotation and translation to map between two sets of
points.

This function implements the
Kabsch algorithm [https://en.wikipedia.org/wiki/Kabsch_algorithm], which
minimizes the RMSD between two sets of points. One benefit of this approach
is that the SVD works in dimensions > 3.

	Parameters

	
	X ((N, m) np.array) – First set of N points.

	Y ((N, m) np.array) – Second set of N points.

	require_rotation (bool) – If false, the returned quaternion.

	Returns

	A tuple (R, t) where R is the (m x m) rotation matrix to rotate the
points and t is the translation.

Example:

import numpy as np

Create some random points, then make a random transformation of
these points
points = np.random.rand(10, 3)
rotation = rowan.random.rand(1)
translation = np.random.rand(1, 3)
transformed_points = rowan.rotate(rotation, points) + translation

Recover the rotation and check
R, t = rowan.mapping.kabsch(points, transformed_points)
q = rowan.from_matrix(R)

assert np.logical_or(
 np.allclose(rotation, q), np.allclose(rotation, -q))
assert np.allclose(translation, t)

	
rowan.mapping.davenport(X, Y)

	Find the optimal rotation and translation to map between two sets of
points.

This function implements the Davenport q-method [https://ntrs.nasa.gov/search.jsp?R=19670009376], the most robust method
and basis of most modern solvers. It involves the construction of a
particular matrix, the Davenport K-matrix, which is then diagonalized to
find the appropriate eigenvalues. More modern algorithms aim to solve the
characteristic equation directly rather than diagonalizing, which can
provide speed benefits at the potential cost of robustness. The
implementation in rowan does not do this, instead simply computing the
spectral decomposition.

	Parameters

	
	X ((N, 3) np.array) – First set of N points.

	Y ((N, 3) np.array) – Second set of N points.

	Returns

	A tuple (q, t) where q is the quaternion to rotate the points and t
is the translation.

Example:

import numpy as np

Create some random points, then make a random transformation of
these points
points = np.random.rand(10, 3)
rotation = rowan.random.rand(1)
translation = np.random.rand(1, 3)
transformed_points = rowan.rotate(rotation, points) + translation

Recover the rotation and check
q, t = rowan.mapping.davenport(points, transformed_points)

assert np.logical_or(
 np.allclose(rotation, q), np.allclose(rotation, -q))
assert np.allclose(translation, t)

	
rowan.mapping.procrustes(X, Y, method='best', equivalent_quaternions=None)

	Solve the orthogonal Procrustes problem with algorithmic options.

	Parameters

	
	X ((N, m) np.array) – First set of N points.

	Y ((N, m) np.array) – Second set of N points.

	method (str) – A method to use. Options are ‘kabsch’, ‘davenport’
and ‘horn’. The default is to select the best option (‘best’).

	equivalent_quaternions (array-like) – If the precise correspondence is
not known, but the points are known to be part of a body with
specific symmetries, the set of quaternions generating
symmetry-equivalent configurations can be provided. These
quaternions will be tested exhaustively to find the smallest
symmetry-equivalent rotation.

	Returns

	A tuple (q, t) where q is the quaternion to rotate the points and t
is the translation.

Example:

import numpy as np

Create some random points, then make a random transformation of
these points
points = np.random.rand(10, 3)
rotation = rowan.random.rand(1)
translation = np.random.rand(1, 3)
transformed_points = rowan.rotate(rotation, points) + translation

Recover the rotation and check
q, t = rowan.mapping.procrustes(
 points, transformed_points, method='horn')

assert np.logical_or(
 np.allclose(rotation, q), np.allclose(rotation, -q))
assert np.allclose(translation, t)

	
rowan.mapping.icp(X, Y, method='best', unique_match=True, max_iterations=20, tolerance=0.001, return_indices=False)

	Find best mapping using the Iterative Closest Point algorithm.

	Parameters

	
	X ((N, m) np.array) – First set of N points.

	Y ((N, m) np.array) – Second set of N points.

	method (str) – A method to use for each alignment. Options are ‘kabsch’,
‘davenport’ and ‘horn’. The default is to select the best option
(‘best’).

	unique_match (bool) – Whether to require nearest neighbors to be unique.

	max_iterations (int) – Number of iterations to attempt.

	tolerance (float) – Indicates convergence.

	return_indices (bool) – Whether to return indices.

	Returns

	A tuple (R, t[, indices]) where R is the matrix to rotate the points, t
is the translation, and indices are the indices of X that map to points
in Y.

Example:

import numpy as np

Create some random points
points = np.random.rand(10, 3)

Only works for small rotations
rotation = rowan.from_axis_angle((1, 0, 0), 0.01)

Apply a random translation and permutation
translation = np.random.rand(1, 3)
permutation = np.random.permutation(10)
transformed_points = rowan.rotate(
 rotation, points[permutation]) + translation

Recover the rotation and check
R, t, indices = rowan.mapping.icp(points, transformed_points,
 return_indices=True)
q = rowan.from_matrix(R)

assert np.logical_or(
 np.allclose(rotation, q), np.allclose(rotation, -q))
assert np.allclose(translation, t)
assert np.array_equal(permutation, indices)

random

Overview

	rowan.random.rand

	Generate random rotations that are uniformly distributed on a unit sphere.

	rowan.random.random_sample

	Generate random rotations uniformly

Details

Various functions for generating random sets of rotation quaternions. Note
that if you simply want random quaternions not restricted to \(SO(3)\) you
can just generate these directly using np.random.rand(... 4). This
subpackage is entirely focused on generating rotation quaternions.

	
rowan.random.rand(*args)

	Generate random rotations that are uniformly distributed on a unit sphere.

This is a convenience function a la np.random.rand. If you want a
function that takes a tuple as input, use random_sample() instead.

	Parameters

	shape (tuple) – The shape of the array to generate.

	Returns

	Random quaternions of the shape provided with an additional axis of
length 4.

Example:

q_rand = rowan.random.rand(3, 3, 2)

	
rowan.random.random_sample(size=None)

	Generate random rotations uniformly

In general, sampling from the space of all quaternions will not generate
uniform rotations. What we want is a distribution that accounts for the
density of rotations, i.e., a distribution that is uniform with respect
to the appropriate measure. The algorithm used here is detailed in
[Shoe92].

	Shoe92

	Shoemake, K.: Uniform random rotations. In: D. Kirk, editor,
Graphics Gems III, pages 124-132. Academic, New York, 1992.

	Parameters

	size (tuple) – The shape of the array to generate.

	Returns

	Random quaternions of the shape provided with an additional axis of
length 4.

Example:

q_rand = rowan.random.random_sample((3, 3, 2))

Development Guide

All contributions to rowan are welcome!
Developers are invited to contribute to the framework by pull request to the package repository on github [https://github.com/glotzerlab/rowan], and all users are welcome to provide contributions in the form of user feedback and bug reports.
We recommend discussing new features in form of a proposal on the issue tracker for the appropriate project prior to development.

Design Philosophy and Code Guidelines

The goal of rowan is to provide a flexible, easy-to-use, and scalable approach to dealing with rotation representations.
To ensure maximum flexibility, rowan operates entirely on NumPy arrays, which serve as the de facto standard for efficient multi-dimensional arrays in Python.
To be available for a wide variety of applications, rowan works for arbitrarily shaped NumPy arrays, mimicking NumPy broadcasting [https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html] to the maximum extent possible.
rowan is meant to be as lightweight and easy to install as possible.
Although it is designed to provide good performance, it is written in pure Python and as such may not be the correct choice in cases where the performance of quaternion operations is a critical bottleneck.

All code contributed to rowan must adhere to the following guidelines:

	Use the OneFlow [https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow] model of development:
- Both new features and bug fixes should be developed in branches based on master.
- Hotfixes (critical bugs that need to be released fast) should be developed in a branch based on the latest tagged release.

	All code must be compatible with all supported versions of Python (listed in the package setup.py file).

	Avoid external dependencies where possible, and avoid introducing any hard dependencies. Soft dependencies are allowed for specific functionality, but such dependencies cannot impede the installation of rowan or the use of any other features.

	All code should adhere to the source code conventions discussed below.

	Follow the rules for documentation discussed below.

	Create unit tests [https://en.wikipedia.org/wiki/Unit_testing] and integration tests [https://en.wikipedia.org/wiki/Integration_testing] that cover the common cases and the corner cases of the code (more information below).

	Preserve backwards-compatibility whenever possible. Make clear if something must change, and notify package maintainers that merging such changes will require a major release.

	Enable broadcasting if at all possible. Functions for which broadcasting is not available must be documented as such.

	For consistency, NumPy should always be imported as np in code: import numpy as np.

Tip

During continuous integration, the code is checked automatically with Flake8 [http://flake8.pycqa.org/en/latest/].
Run the following commands to set up a pre-commit hook that will ensure your code is compliant before committing:

flake8 --install-hook git
git config --bool flake8.strict true

Note

Please see the individual package documentation for detailed guidelines on how to contribute to a specific package.

Source Code Conventions

All code in rowan should follow PEP 8 [https://www.python.org/dev/peps/pep-0008/] guidelines, which are the de facto standard for Python code.
In addition, follow the Google Python Style Guide [https://google.github.io/styleguide/pyguide.html], which is largely a superset of PEP 8.
Note that Google has amended their standards to match PEP 8’s 4 spaces guideline, so write code accordingly.

All code should follow the principles in PEP 20 [https://www.python.org/dev/peps/pep-0020/].
In particular, always prefer simple, explicit code where possible, avoiding unnecessary convolution or complicated code that could be written more simply.
Avoid writing code in a manner that will be difficult for others to understand.

Documentation

API documentation should be written as part of the docstrings of the package.
All docstrings should be written in the Google style.

Python example:

This is the correct style
def multiply(x, y):
 """Multiply two numbers

 Args:
 x (float): The first number
 y (float): The second number

 Returns:
 The product
 """

This is the incorrect style
def multiply(x, y):
 """Multiply two numbers

 :param x: The first number
 :type x: float
 :param y: The second number
 :type y: float
 :returns: The product
 :rtype: float
 """

Documentation must be included for all functions in all files.
The official documentation [https://rowan.readthedocs.io/] is generated from the docstrings using Sphinx [http://www.sphinx-doc.org/en/stable/index.html].

In addition to API documentation, inline comments are highly encouraged.
Code should be written as transparently as possible, so the primary goal of documentation should be explaining the algorithms or mathematical concepts underlying the code.
Avoid comments that simply restate the nature of lines of code.
For example, the comment “compute the spectral decomposition of A” is uninformative, since the code itself should make this obvious, e.g, np.linalg.eigh.
On the other hand, the comment “the eigenvector corresponding to the largest eigenvalue of the A matrix is the quaternion” is instructive.

Unit Tests

All code should include a set of unit tests which test for correct behavior.
All tests should be placed in the tests folder at the root of the project.
These tests should be as simple as possible, testing a single function each, and they should be kept as short as possible.
Tests should also be entirely deterministic: if you are using a random set of objects for testing, they should either be generated once and then stored in the tests/files folder, or the random number generator in use should be seeded explicitly (e.g, numpy.random.seed or random.seed).
Tests should be written in the style of the standard Python unittest [https://docs.python.org/3/library/unittest.html] framework.
At all times, tests should be executable by simply running python -m unittest discover tests from the root of the project.

Release Guide

To make a new release of rowan, follow the following steps:

	Make a new branch off of master based on the expected new version, e.g.
release-2.3.1.

	Make any final changes as desired on this branch. Push the changes and
ensure all tests are passing as expected on the new branch.

	Once the branch is completely finalized, run bumpversion with the
appropriate type (patch, minor, major) so that the version now matches the
version number in the branch name.

	Merge the branch back into master, then push master and push tags. The
tagged commit will automatically trigger generation of binaries and upload
to PyPI and conda-forge.

	Delete the release branch both locally and on the remote.

License

rowan BSD-3 Clause Open Source Software License

Copyright 2010-2018 The Regents of the University of Michigan
All rights reserved.

rowan may contain modifications ("Contributions") provided, and to which
copyright is held, by various Contributors who have granted The Regents of the
University of Michigan the right to modify and/or distribute such Contributions.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
 may be used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Changelog

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/].
This project adheres to Semantic Versioning [http://semver.org/spec/v2.0.0.html].

Unreleased

v1.2.2 - 2019-09-11

Added

	Mapping indices can be returned upon request from mapping.icp.

Fixed

	Euler angle calculations when cos(beta) = 0.

v1.2.1 - 2019-05-30

Added

	Official ContributorAgreement.

Fixed

	Broadcasting for nD arrays of quaternions in to_axis_angle is fixed.

	Providing equivalent quaternions to mapping.procrustes properly performs rotations.

v1.2.0 - 2019-02-12

Changed

	Code is now hosted on GitHub.

Fixed

	Various style issues.

v1.1.7 - 2019-01-23

Changed

	Stop requiring unit quaternions for rotation and reflection (allows scaling).

v1.1.6 - 2018-10-18

Fixed

	Fifth try of releasing using CircleCI.

v1.1.5 - 2018-10-18

Fixed

	Fourth try of releasing using CircleCI.

v1.1.4 - 2018-10-18

Fixed

	Third try of releasing using CircleCI.

v1.1.3 - 2018-10-18

Fixed

	Second try of releasing using CircleCI.

v1.1.2 - 2018-10-18

Fixed

	Fix usage of release tag in CircleCI config.

v1.1.1 - 2018-10-18

Added

	Automated deployment using CircleCI.

	Added PDF of paper to the repository.

Fixed

	Added missing factor of 2 in angle calculation.

	Fixed issue where method was not respected in rowan.mapping.

	Disabled equivalent quaternion feature and test of rowan.mapping, which has a known bug.

	Added missing negative in failing unit test.

v1.1.0 - 2018-07-30

Added

	Included benchmarks including comparison to alternatives.

	Installation instructions in the Sphinx documentation.

	More examples for rowan.mapping.

Changed

	All examples in docstrings now use the full paths of subpackages.

	All examples in docstrings import all needed packages aside from rowan.

Fixed

	Instability in vector_vector_rotation for antiparallel vectors.

	Various code style issues.

	Broken example in the Sphinx documentation.

v1.0.0 - 2018-05-29

Fixed

	Numerous style fixes.

	Fix version numbering in the Changelog.

v0.6.1 - 2018-04-20

Fixed

	Use of bumpversion and consistent versioning across the package.

v0.6.0 - 2018-04-20

Added

	Derivatives and integrals of quaternions.

	Point set registration methods and Procrustes analysis.

v0.5.1 - 2018-04-13

Fixed

	README rendering on PyPI.

v0.5.0 - 2018-04-12

Added

	Various distance metrics on quaternion space.

	Quaternion interpolation.

Fixed

	Update empty __all__ variable in geometry to export functions.

v0.4.4 - 2018-04-10

Added

	Rewrote internals for upload to PyPI.

v0.4.3 - 2018-04-10

Fixed

	Typos in documentation.

v0.4.2 - 2018-04-09

Added

	Support for Read The Docs and Codecov.

	Simplify CircleCI testing suite.

	Minor changes to README.

	Properly update this document.

v0.4.1 - 2018-04-08

Fixed

	Exponential for bases other than e are calculated correctly.

v0.4.0 - 2018-04-08

Added

	Add functions relating to exponentiation: exp, expb, exp10, log, logb, log10, power.

	Add core comparison functions for equality, closeness, finiteness.

v0.3.0 - 2018-03-31

Added

	Broadcasting works for all methods.

	Quaternion reflections.

	Random quaternion generation.

Changed

	Converting from Euler now takes alpha, beta, and gamma as separate args.

	Ensure more complete coverage.

v0.2.0 - 2018-03-08

Added

	Added documentation.

	Add tox support.

	Add support for range of python and numpy versions.

	Add coverage support.

Changed

	Clean up CI.

	Ensure pep8 compliance.

v0.1.0 - 2018-02-26

Added

	Initial implementation of all functions.

Credits

The following people contributed to the rowan package.

Vyas Ramasubramani <vramasub@umich.edu>, University of Michigan - Lead developer.

	Initial design.

	Wrote quaternion operations.

	Wrote calculus subpackage.

	Wrote geometry subpackage.

	Wrote interpolate subpackage.

	Wrote mapping subpackage.

	Wrote random subpackage.

	Wrote documentation.

Bradley Dice <bdice@bradleydice.com>, University of Michigan

	Code review.

	JOSS paper review.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rowan	
 Core contents of rowan

 	
 	
 rowan.calculus	
 Perform calculus operations

 	
 	
 rowan.geometry	
 Calculations related to quaternion geometry such as distances

 	
 	
 rowan.interpolate	
 Interpolate between quaternions

 	
 	
 rowan.mapping	
 Procrustes analysis and point set registration

 	
 	
 rowan.random	
 Generate random quaternions

Index

 A
 | C
 | D
 | E
 | F
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V

A

 	
 	allclose() (in module rowan)

 	
 	angle() (in module rowan.geometry)

C

 	
 	conjugate() (in module rowan)

D

 	
 	davenport() (in module rowan.mapping)

 	derivative() (in module rowan.calculus)

 	
 	distance() (in module rowan.geometry)

 	divide() (in module rowan)

E

 	
 	equal() (in module rowan)

 	
 	exp10() (in module rowan)

 	expb() (in module rowan)

F

 	
 	from_axis_angle() (in module rowan)

 	from_euler() (in module rowan)

 	
 	from_matrix() (in module rowan)

 	from_mirror_plane() (in module rowan)

I

 	
 	icp() (in module rowan.mapping)

 	integrate() (in module rowan.calculus)

 	intrinsic_distance() (in module rowan.geometry)

 	is_unit() (in module rowan)

 	
 	isclose() (in module rowan)

 	isfinite() (in module rowan)

 	isinf() (in module rowan)

 	isnan() (in module rowan)

K

 	
 	kabsch() (in module rowan.mapping)

L

 	
 	log10() (in module rowan)

 	
 	logb() (in module rowan)

M

 	
 	multiply() (in module rowan)

N

 	
 	norm() (in module rowan)

 	
 	normalize() (in module rowan)

 	not_equal() (in module rowan)

P

 	
 	procrustes() (in module rowan.mapping)

R

 	
 	rand() (in module rowan.random)

 	random_sample() (in module rowan.random)

 	reflect() (in module rowan)

 	riemann_exp_map() (in module rowan.geometry)

 	riemann_log_map() (in module rowan.geometry)

 	rotate() (in module rowan)

 	
 	rowan (module)

 	rowan.calculus (module)

 	rowan.geometry (module)

 	rowan.interpolate (module)

 	rowan.mapping (module)

 	rowan.random (module)

S

 	
 	slerp() (in module rowan.interpolate)

 	slerp_prime() (in module rowan.interpolate)

 	
 	squad() (in module rowan.interpolate)

 	sym_distance() (in module rowan.geometry)

 	sym_intrinsic_distance() (in module rowan.geometry)

T

 	
 	to_axis_angle() (in module rowan)

 	
 	to_euler() (in module rowan)

 	to_matrix() (in module rowan)

V

 	
 	vector_vector_rotation() (in module rowan)

 _static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 rowan

 		
 rowan

 		
 calculus

 		
 geometry

 		
 interpolate

 		
 mapping

 		
 random

 		
 Development Guide

 		
 Design Philosophy and Code Guidelines

 		
 Source Code Conventions

 		
 Documentation

 		
 Unit Tests

 		
 Release Guide

 		
 License

 		
 Changelog

 		
 Unreleased

 		
 v1.2.2 - 2019-09-11

 		
 Added

 		
 Fixed

 		
 v1.2.1 - 2019-05-30

 		
 Added

 		
 Fixed

 		
 v1.2.0 - 2019-02-12

 		
 Changed

 		
 Fixed

 		
 v1.1.7 - 2019-01-23

 		
 Changed

 		
 v1.1.6 - 2018-10-18

 		
 Fixed

 		
 v1.1.5 - 2018-10-18

 		
 Fixed

 		
 v1.1.4 - 2018-10-18

 		
 Fixed

 		
 v1.1.3 - 2018-10-18

 		
 Fixed

 		
 v1.1.2 - 2018-10-18

 		
 Fixed

 		
 v1.1.1 - 2018-10-18

 		
 Added

 		
 Fixed

 		
 v1.1.0 - 2018-07-30

 		
 Added

 		
 Changed

 		
 Fixed

 		
 v1.0.0 - 2018-05-29

 		
 Fixed

 		
 v0.6.1 - 2018-04-20

 		
 Fixed

 		
 v0.6.0 - 2018-04-20

 		
 Added

 		
 v0.5.1 - 2018-04-13

 		
 Fixed

 		
 v0.5.0 - 2018-04-12

 		
 Added

 		
 Fixed

 		
 v0.4.4 - 2018-04-10

 		
 Added

 		
 v0.4.3 - 2018-04-10

 		
 Fixed

 		
 v0.4.2 - 2018-04-09

 		
 Added

 		
 v0.4.1 - 2018-04-08

 		
 Fixed

 		
 v0.4.0 - 2018-04-08

 		
 Added

 		
 v0.3.0 - 2018-03-31

 		
 Added

 		
 Changed

 		
 v0.2.0 - 2018-03-08

 		
 Added

 		
 Changed

 		
 v0.1.0 - 2018-02-26

 		
 Added

 		
 Credits

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

